Playing Games with Dynamic Epistemic Logic Dynamics in Logic II, Lille, 1 March 2012

Thomas Ågotnes
based on joint work with:
Hans van Ditmarsch
Johan van Benthem
Stefan Minica

Introduction

- Dynamic epistemic logic is concerned with describing actions and other events, and their epistemic pre- and post-conditions
- Which actions will rational agents actually make?
- To answer that, some kind of preferences over epistemic states must be assumed
- Epistemic states eventually depend on the actions chosen by all agents
\Rightarrow game theoretic scenario
- Games are inherent in epistemic structures!

Dynamic Epistemic Games: Dimensions

- Dimensions:
- Models/representations of preferences (epistemic goals, ...)
- Types of actions (public announcements, ...)
- Simultaneous vs. alternating actions
- Single action or action sequence
- Possibility of coalition formation
- ... this looks like a research program

Today: two types of action

- Today I will discuss a couple of the simplest cases
- Actions:
- public announcements
- questions and answers
- with "simple" assumptions about the other dimensions

Part I: Public Announcement Games

Setting

- Simple (or so you may think) setting:
- Actions = truthful announcements
- Goals in the form of formulae of epistemic logic (assumed common knowledge)
- Strategic form games

Knowledge and Games, and Vice Versa

- Much existing work on epistemics in games
- Now: from knowledge in games to games of knowledge
- ... and back again

Public Announcement Logic (Plaza, 1989)

$$
\varphi::=p\left|K_{i} \varphi\right| \neg \varphi\left|\varphi_{1} \wedge \varphi_{2}\right|\left\langle\varphi_{1}\right\rangle \varphi_{2}
$$

ϕ_{1} is true, and ϕ_{2} is true after ϕ_{1} is announced

Formally:

$$
\begin{array}{ll}
M=\left(S, \sim_{1}, \ldots, \sim_{n}, V\right) \quad \sim_{i} \text { equivalence rel. over S } \\
M, s \models K_{i} \phi & \Leftrightarrow \quad \forall t \sim_{i} s M, t \models \phi \\
M, s \models\left\langle\phi_{1}\right\rangle \phi_{2} & \Leftrightarrow \quad M, s \models \phi_{1} \text { and } M \mid \phi_{1}, s \models \phi_{2}
\end{array}
$$

The model resulting from removing states where ϕ_{1} is false

Example

Example

Example

Example

$\bullet{ }_{t} p_{B}, p_{A} \quad A n n \quad \bullet_{S}^{p_{B}, p_{A}}$

Example

$\bullet{ }_{t} p_{B}, p_{A} \quad A n n \quad \bullet_{S}^{p_{B}, p_{A}}$

$$
M, s \models\left\langle K_{A} p_{A}\right\rangle K_{B} p_{A}
$$

Example

Setting

- Assume that agents:
- have incomplete information about the world;
- have goals in the form of formulae of epistemic logic (common knowledge);
- only make truthful announcements;
- choose announcements independently;
- act rationally

Epistemic Goal Structures

Definition 1 (Epistemic Goal Structure) An (n-player) epistemic goal structure ($E C G$) is a tuple

$$
\left\langle M, \gamma_{1}, \ldots, \gamma_{n}\right\rangle
$$

where M is an epistemic structure, and $\gamma_{i} \in \mathcal{L}_{\text {pal }}$ is the goal formula for agent i. A pointed ECG is a tuple

$$
\left\langle M, s, \gamma_{1}, \ldots, \gamma_{n}\right\rangle
$$

where s a state in M.

Example

$$
\begin{aligned}
& \left\langle M, s, \gamma_{1}, \ldots, \gamma_{n}\right\rangle \\
& \bullet \neg p_{B}, p_{A} \quad A n n \quad \bullet_{s}^{p_{B}, p_{A}} \ldots \text { Bill } \bullet_{u}^{p_{B}, \neg p_{A}} \\
& \gamma_{A n n}=\left(K_{B} p_{A} \vee K_{B} \neg p_{A}\right) \rightarrow\left(K_{A} p_{B} \vee K_{A} \neg p_{B}\right) \\
& \gamma_{\text {Bill }}=\left(K_{A} p_{B} \vee K_{A} \neg p_{B}\right) \rightarrow\left(K_{B} p_{A} \vee K_{B} \neg p_{A}\right)
\end{aligned}
$$

From ECG to Public Announcement Game

$$
\left\langle M, s, \gamma_{1}, \ldots, \gamma_{n}\right\rangle
$$

- Strategies: $\quad A_{i}=\left\{\phi_{i}: M, s \models K_{i} \phi_{i}\right\}$
- Payoffs: $\quad u_{i}\left(\left\langle\phi_{1}, \ldots, \phi_{n}\right\rangle\right)= \begin{cases}1 & M, s \models\left\langle K_{1} \phi_{1} \wedge \cdots \wedge K_{n} \phi_{n}\right\rangle \gamma_{i} \\ 0 & \text { otherwise }\end{cases}$

Example

$$
\begin{aligned}
& \gamma_{A n n}=\left(K_{B} p_{A} \vee K_{B} \neg p_{A}\right) \rightarrow\left(K_{A} p_{B} \vee K_{A} \neg p_{B}\right) \\
& \gamma_{\text {Bill }}=\left(K_{A} p_{B} \vee K_{A} \neg p_{B}\right) \rightarrow\left(K_{B} p_{A} \vee K_{B} \neg p_{A}\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
& \gamma_{A n n}=\left(K_{B} p_{A} \vee K_{B} \neg p_{A}\right) \rightarrow\left(K_{A} p_{B} \vee K_{A} \neg p_{B}\right) \\
& \gamma_{\text {Bill }}=\left(K_{A} p_{B} \vee K_{A} \neg p_{B}\right) \rightarrow\left(K_{B} p_{A} \vee K_{B} \neg p_{A}\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
& \bullet \neg p_{B}, p_{A} \ldots A n n \quad \bullet_{s}^{p_{B}, p_{A} \ldots \ldots \quad \text { Bill } \ldots \ldots . \bullet_{u}^{p_{B}}, \neg p_{A}} \\
& \begin{array}{c|cc}
& & \\
& \text { । } & \\
& \text { । } & \\
& \top & \mathbf{p}_{\mathbf{B}} \\
\hline \top & 11 & 10 \\
\mathbf{p}_{\mathbf{A}} & 01 & 11
\end{array} \\
& \gamma_{A n n}=\left(K_{B} p_{A} \vee K_{B} \neg p_{A}\right) \rightarrow\left(K_{A} p_{B} \vee K_{A} \neg p_{B}\right) \\
& \gamma_{\text {Bill }}=\left(K_{A} p_{B} \vee K_{A} \neg p_{B}\right) \rightarrow\left(K_{B} p_{A} \vee K_{B} \neg p_{A}\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
& \begin{array}{c|cc}
& & \\
& \text { । } & \\
& \text { । } & \\
& \top & \mathbf{p}_{\mathbf{B}} \\
\hline \top & 11 & 10 \\
\mathbf{p}_{\mathbf{A}} & 01 & 11
\end{array} \\
& \gamma_{A n n}=\left(K_{B} p_{A} \vee K_{B} \neg p_{A}\right) \rightarrow\left(K_{A} p_{B} \vee K_{A} \neg p_{B}\right) \\
& \gamma_{\text {Bill }}=\left(K_{A} p_{B} \vee K_{A} \neg p_{B}\right) \rightarrow\left(K_{B} p_{A} \vee K_{B} \neg p_{A}\right)
\end{aligned}
$$

State games

State games

- Similarities to Boolean Games (Harrenstein, et al.)

State games

- Similarities to Boolean Games (Harrenstein, et al.)
- However: the agents do not know which game they are playing!

State games

- Similarities to Boolean Games (Harrenstein, et al.)
- However: the agents do not know which game they are playing!
- They don't even know the strategies available to the other agent

State games

- Similarities to Boolean Games (Harrenstein, et al.)
- However: the agents do not know which game they are playing!
- They don't even know the strategies available to the other agent

State games

- Similarities to Boolean Games (Harrenstein, et al.)
- However: the agents do not know which game they are playing!
- They don't even know the strategies available to the other agent

Solution concepts

- Public announcement games is a particular type of strategic games with imperfect information
- Intimate connection between information, strategies and payoff
-What are reasonable solution concepts?
- Let us consider some possibilities

Weakly dominant strategies

- It might be that there is a dominant strategy, but that the agent does not know it
- In the case that the agent knows that there is a dominant strategy, it might be that:
- The agent has a weakly dominant strategy de dicto: there is a weakly dominant strategy in every state she considers possible
- The agent has a weakly dominant strategy de re: there is a strategy which is weakly dominant in every state she considers possible

Weakly dominant strategies

Weakly dominant strategies

Weakly dominant strategies

- Ann has a weakly dominant strategy de re (and, by implication, de dicto)

Weakly dominant strategies

There are goal formulae which give the following

Weakly dominant strategies

There are goal formulae which give the following

- Ann has a weakly dominant strategy de dicto, but not de re

Positive Goals

The positive fragment of PAL:

$$
\phi::=p|\neg p| \phi \wedge \phi|\phi \vee \phi| K_{i} \phi \mid[\phi] \phi
$$

Positive Goals

The positive fragment of PAL:

$$
\phi::=p|\neg p| \phi \wedge \phi|\phi \vee \phi| K_{i} \phi \mid[\phi] \phi
$$

Theorem

If the goal of an agent is in the positive fragment, then that agent has a weakly dominant strategy de re in any state.

Nash Equilibrium

- De dicto/de re distinction not as clear:
- several agents involved
- what does it mean that they know that an outcome is a NE?
- Common assumption: common knowledge
- Thus: let us say that there is a Nash equilibrium de re in a PAG if there is a strategy profile which it is commonly known is a NE

Nash Equilibrium de re

Nash Equilibrium de dicto, but not de re

Nash equilibrium

Nash equilibrium

Theorem
If there is a Nash-equilibrium that is common knowledge, then it is non-informative

But which game are they really playing?

- Can a public announcement game be viewed as a single strategic game?

The induced game

Definition 1 Given a PAG $A G=\left\langle M, \gamma_{1}, \ldots, \gamma_{n}\right\rangle$ with $M=\left(S, \sim_{1}, \ldots, \sim_{n}\right.$ $, V)$, the induced game $G_{A G}$ is defined as follows:

- $N=\{1, \ldots, n\}$
- A_{i} is the set of functions $a: S \rightarrow \mathcal{L}_{e l}$ with the following properties:
- Truthfulness: $M, s \models K_{i} a(s)$ for any s
- Uniformity: $s \sim_{i} t \Rightarrow a(s)=a(t)$
- For any state s in $A G$, let $G(A G, s)=\left(N,\left\{A_{i}^{s}: i \in N\right\},\left\{u_{i}^{s}: i \in N\right\}\right)$ be the state game associated with s. Let:

$$
u_{i}\left(a_{1}, \ldots, a_{n}\right)=\frac{\sum_{s \in S} u_{i}^{s}\left(a_{1}(s), \ldots, a_{n}(s)\right)}{|S|}
$$

The induced game

- A strategy is a complete plan of action for any state (even those that the agent knows are not the actual one)
- One agent might not know which states another agent considers possible, and must therefore consider what the other agent will do in a range of circumstances
- Payoffs are computed by taking the average over all states in the model
- Corresponds to expected payoffs computed by a common knower someone whose knowledge is exactly what is common knowledge in the game
- If we alternatively, e.g., computed an agent's payoff by taking the average over the set of states she considers possible, the game wouldn't be common knowledge
- It follows that the induced game is a model property rather than a pointed model property

Example

Nash Announcement Equilibrium

- Definition: a Nash Announcement Equilibrium of a Public Announcement Game is a Nash equilibrium of the induced game

Bayesian Games

- Nash Announcement Equilibria = Bayes-Nash equilibria of a certain class of Bayesian Games (Harsanyi)
- Induced Public Announcement Games are Bayesian Games

Some properties

Theorem

If an agent has a weakly dominant strategy de re in every state of a EGS, then she has a weakly dominant strategy in the induced game.

Some properties

Theorem

If an agent has a weakly dominant strategy de re in every state of a EGS, then she has a weakly dominant strategy in the induced game.

Theorem
If an agent has a positive goal, then she has a weakly dominant strategy in the induced game.

Part II: Questions and Answers

Introduction

- Do you have the queen of spades?
- What is the right question?
- Depends on: the information revealed by possible answers, your goal, the questions you think others will ask, others' goals, ...
- Besides individual decisions, scenarios that require genuine interactive rationality are very frequent not only in parlour games but also in everyday life

Motivation

- Modelling the dynamics of strategic questioning and answering
- Providing new links between game theory and dynamic logics of information
- Exploiting the dynamic/strategic structure that lies implicitly inside standard epistemic models
- Relevant earlier work:
- Inquisitive semantics (Groenendijk, 2008)
- Questioning dynamics by issue management (van Benthem and Minica, 2009)
- Knowledge Games (van Ditmarsch, 2002, 2004)

Starting point

Standard pointed epistemic model:

$$
\begin{gathered}
(M, s) \\
M=\left(S, \sim_{1}, \ldots, \sim_{n}, V\right) \quad \sim_{i} \text { equivalence rel. over } \mathrm{S}
\end{gathered}
$$

What are questions, answers and games in this setting?

Questions

We model a question as a formula of standard multi-agent epistemic logic. For example:

$$
K_{a} p ?
$$

is the question "does a know that p ?"

Questions: pragmatic preconditions

$$
K_{a} p ?
$$

It can possibly be assumed that before the question is answered:

$$
\begin{gathered}
\neg K_{a} p \wedge \neg K_{a} \neg p \\
\neg K_{a} \neg\left(K_{b} \vee K_{b} \neg p\right)
\end{gathered}
$$

Answers

- We assume that:
- questions are answered truthfully
- the person questioned is obliged to answer
- the answer is publicly announced

Answers

a asks b :
$\phi ?$

Answers

a asks b :

$$
\phi ?
$$

3 possible answers; the announcements:

$$
\begin{array}{ll}
K_{b} \phi! & \text { ("yes!") } \\
K_{b} \neg \phi! & \text { ("no!") } \\
\neg\left(K_{b} \phi \vee K_{b} \neg \phi\right)! & \text { ("l don’t know!") }
\end{array}
$$

Answers

- In dynamic epistemic logic, a public announcement is interpreted as a model restriction
- Answers can be seen as rough sets:
"yes!"

$$
\sim_{b}([[\phi]])
$$

"no!"
the actual state is in

$$
\overline{\sim_{b}}([[\phi]])
$$

$$
\overline{\sim_{b}}([[\phi]]) \backslash \underline{\sim_{b}}([[\phi]])
$$

$$
[[\phi]]=\{s \in S: M, s \models \phi\}
$$

Answers

Let:

$$
\bar{K}_{i} \phi= \begin{cases}K_{i} \phi & M, s \models K_{i} \phi \\ K_{i} \neg \phi & M, s \models K_{i} \neg \phi \\ \neg\left(K_{i} \phi \vee K_{i} \neg \phi\right) & \text { otherwise }\end{cases}
$$

Games

- Assumptions
- preferences are modelled as (typically epistemic) goal formulae, in the style of Boolean games
- e.g., Ann's goal is to get to know the secret without Bill knowing it
- each agent asks a single question, at the same time
- 2 players

Games

Given a pointed epistemic structure M, s and goals γ_{a} and γ_{b}, we define the following pointed questionanswer game:

- $N=\{a, b\}$
- Strategies: $A_{i}=\{\phi$?: $\phi \in \mathcal{L}\}$
- Payoffs:

$$
u_{i}(\langle\phi ?, \psi ?\rangle)= \begin{cases}1 & M, s \models\left\langle\bar{K}_{b} \phi \wedge \bar{K}_{a} \psi\right\rangle \gamma_{i} \\ 0 & \text { otherwise }\end{cases}
$$

Taking pragmatic preconditions into account

- This definition is easily modified for pragmatic preconditions of questions:
- Restricting the strategy space
- Updating not only with the answers to the questions, but also with the preconditions
- Will disregard pragmatic preconditions in the following

$$
A_{i}=\{\phi ?: \phi \in \mathcal{L}\}
$$

When are two questions the same?

$$
\bullet_{t}^{p, \neg q} A n n \bullet_{s}^{p, q} \quad \text { Bill } \neg_{u} p, q
$$

$$
A_{i}=\{\phi ?: \phi \in \mathcal{L}\}
$$

When are two questions the same?

$$
\bullet_{t}^{p, \neg q} A n n \bullet_{s}^{p, q} \quad \operatorname{Bill} \bullet_{u} p, q
$$

$q ?$ and $q \wedge q$? are the same question (for $A n n$)

$$
A_{i}=\{\phi ?: \phi \in \mathcal{L}\}
$$

When are two questions the same?

$$
\bullet_{t}^{p, \neg q} A n n \bullet_{s}^{p, q} \quad \operatorname{Bill} \bullet_{u} p, q
$$

q ? and $q \wedge q$? are the same question (for $A n n$)
q ? and p ? are the same question (for $A n n$)

Equivalence of questions

We say that ϕ ? and ψ ? are equivalent when:

$$
\begin{aligned}
& \left\{\left[\left[K_{i} \phi\right]\right], \quad\left[\left[K_{i} \neg \phi\right]\right], \quad\left[\left[\neg\left(K_{i} \phi \vee K_{i} \neg \phi\right)\right]\right]\right\} \\
& \left\{\left[\left[K_{i} \psi\right]\right],\left[\left[K_{i} \neg \psi\right]\right], \quad\left[\left[\neg\left(K_{i} \psi \vee K_{i} \neg \psi\right)\right]\right]\right\}
\end{aligned}
$$

Note that it is common knowledge when two questions are equivalent

$$
[[\phi]]=\{s \in S: M, s \models \phi\}
$$

Dichotomous games

- We call a game dichotomous if agents can only ask questions (equivalent to) of the form "do you know that ..."?
- Formally: every strategy for a is equivalent to a strategy of the form $K_{b} \phi$, and similarly for b
- Special case: restrict allowed questions to be only of this form
- This rules out the third answer alternative
- We call a game dichotomous if agents can only ask questions (equivalent to) of the form "do you know that ..."?
- Formally: every strategy for a is equivalent to a strategy of the form $K_{b} \phi$, and similarly for b
- Special case: restrict allowed questions to be only of this form
- This rules out the third answer alternative

$$
\text { Dichotomous games } \bar{K}_{i} \phi= \begin{cases}K_{i} \phi & M, s \models K_{i} \phi \\ K_{i} \neg \phi & M, s \models K_{i} \neg \phi \\ -\left(K_{i} \phi \vee K_{i} \neg \phi\right) & \text { otherwise- }\end{cases}
$$

- We call a game dichotomous if agents can only ask questions (equivalent to) of the form "do you know that ..."?
- Formally: every strategy for a is equivalent to a strategy of the form $K_{b} \phi$, and similarly for b
- Special case: restrict allowed questions to be only of this form
- This rules out the third answer alternative

Strategies

In finite dichotomous games in bisimulation contracted structures, i has

$$
2^{m_{j} m_{i}-m_{i}}
$$

different non-equivalent questions to ask j, where m_{i}, m_{j} are the number of equivalence classes for i and j respectively

Example

$$
\begin{aligned}
& \gamma_{A n n}=\left(K_{B} p_{A} \vee K_{B} \neg p_{A}\right) \rightarrow\left(K_{A} p_{B} \vee K_{A} \neg p_{B}\right) \\
& \gamma_{\text {Bill }}=\left(K_{A} p_{B} \vee K_{A} \neg p_{B}\right) \rightarrow\left(K_{B} p_{A} \vee K_{B} \neg p_{A}\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
& \gamma_{A n n}=\left(K_{B} p_{A} \vee K_{B} \neg p_{A}\right) \rightarrow\left(K_{A} p_{B} \vee K_{A} \neg p_{B}\right) \\
& \gamma_{\text {Bill }}=\left(K_{A} p_{B} \vee K_{A} \neg p_{B}\right) \rightarrow\left(K_{B} p_{A} \vee K_{B} \neg p_{A}\right)
\end{aligned}
$$

Example

Example

$$
\begin{aligned}
& \gamma_{A n n}=\left(K_{B} p_{A} \vee K_{B} \neg p_{A}\right) \rightarrow\left(K_{A} p_{B} \vee K_{A} \neg p_{B}\right) \\
& \gamma_{\text {Bill }}=\left(K_{A} p_{B} \vee K_{A} \neg p_{B}\right) \rightarrow\left(K_{B} p_{A} \vee K_{B} \neg p_{A}\right)
\end{aligned}
$$

Solution concepts

- Again, intimate connection between information, strategies and payoff
-What are reasonable solution concepts?
- Let us consider some possibilities

Weakly dominant strategies

- It might be that there is a dominant question, but that the agent does not know it
- In the case that the agent knows that there is a dominant question, it might be that:
- The agent has a weakly dominant question de dicto: there is a weakly dominant question in every state she considers possible
- The agent has a weakly dominant question de re: there is a question which is weakly dominant in every state she considers possible

Weakly dominant strategies

Weakly dominant strategies

- $\neg^{p_{B}, p_{A}}$			Ann	$\bullet_{S}^{p_{B}, p_{A}}$			Bill	- $_{u}^{p_{B}, \neg p_{A}}$		
	,				-				।	
	।				।				।	
	T				1				1	
	T?	p_{A} ?			T?	p_{A} ?			T?	$\mathbf{p A}^{\text {A }}$?
T?	01	01		T?	11	01		T?	10	11
p_{B} ?	11	11		\mathbf{p}_{B} ?	10	11		p_{B} ?	10	11

- Ann has a weakly dominant strategy de re (and, by implication, de dicto)

The most informative question

Proposition:

There is always a most informative question that can be asked, making the opponent reveal all she knows

If the questioner's goal is in the positive fragment, asking the most informative question is always a dominant strategy

The positive fragment:

$$
\phi::=p|\neg p| \phi \wedge \phi|\phi \vee \phi| K_{i} \phi \mid[\phi] \phi
$$

The most informative question

Proposition:

There is always a most informative question that can be asked, making the opponent reveal all she knows

If the questioner's goal is in the positive fragment, asking the most informative question is always a dominant strategy

Thus, if all goals are positive, there is a NE in every state However, she may only know de dicto that she has a dominant strategy

The positive fragment:

$$
\phi::=p|\neg p| \phi \wedge \phi|\phi \vee \phi| K_{i} \phi \mid[\phi] \phi
$$

Common knowledge Nash equilibrium

- $\neg p_{B}, p_{A}$			Ann	$\bullet{ }_{S}^{p_{B}, p_{A}}$			Bill	- $_{u}^{p_{B}, \neg p_{A}}$		
	\|				।				।	
	।				\|				I	
	।				।				1	
	T?	$\mathbf{p a}_{\mathbf{A}}$?			T?	$\mathbf{p}_{\mathbf{A}}$?			T?	$\mathbf{p A}_{\mathbf{A}}$?
T?	01	01		T?		01		T?	10	11
\mathbf{p}_{B} ?	11	11		p_{B} ?	10	11		p_{B} ?	10	11

Which game are they really playing?

- Can a question-answer game be viewed as a single strategic game?

${ }_{t} \neg^{\text {p }}$, p_{A}		
।		
	T	$\neg \mathrm{p}_{\mathrm{B}}$
T)	01	11
$\mathrm{p}_{\text {A }}$	01	11

Ann

The induced game

Definition 1 Given M, s with $M=\left(S, \sim_{1}, \ldots, \sim_{n}, V\right)$ and γ_{a} and γ_{b}, the induced game is defined as follows:

- $N=\{a, b\}$
- A_{i} is the set of uniform functions $a: S \rightarrow \mathcal{L}$
- Uniform: $s \sim_{i} t \Rightarrow a(s)=a(t)$

$$
u_{i}\left(a_{1}, a_{2}\right)=\frac{\sum_{s \in S} u_{i}^{s}\left(a_{a}(s), a_{b}(s)\right)}{|S|}
$$

where u_{i}^{s} is the payoff function in the "local" game in s

Strategies in the induced game

Proposition If the structure is finite, dichotomous and bisimulation contracted structures, a has

$$
2^{m_{a} m_{b}-m_{a}}
$$

non-equivalent strategies in the induced game, where m_{a} and m_{b} is the number of a - and b-equivalence classes, respectively

Bayesian Games

- Equilibria in the induced game $=$ Bayes-Nash equilibria of Bayesian Games (Harsanyi) under some natural assumptions
- Induced Q-A games are Bayesian Games

A practical tool

- We have implemented a tool:
- input: pointed epistemic model + goal formulae
- output: induced game
- Based on van Eijk's DEMO model checker for DEL

Illustrations

*QAGM> displayS5 m78

```
[0,1,2,3]
[(0,[]),(1,[p]),(2,[q]),(3,[p,q])]
(a,[[0,2],[1,3]])
(b,[[0,1],[2,3]])
[0,1,2,3]
```

*QAGM> display 4 (qagame m78 (K a (dimp p q),K b (dimp q p)))
$(0,0)(0,1)(0,1)(0,2)$
$(1,0)(1,1)(1,1)(1,2)$
$(1,0)(1,1)(1,1)(1,2)$
$(2,0)(2,1)(2,1)(2,2)$
*QAGM> (profiles m78)!!15
$[([(0,2], v[n, n 1]),([1,3], v[n, n 1])],[([0,1], v[n, n 2]),([2,3], v[n, n 2])]]$

Illustrations

*QAGM> display 4 (qagame m78 (Disj [Conj [Neg (K a q),Neg (K b p)],Conj [K a (dimp p q),K b (dimp p q)]],Neg(Disj [Conj [Neg (K a q),Neg (K b p)],Conj [K a (dimp p q),K b (dimp p q)]])))
$(4,0)(3,1)(3,1)(2,2)$
$(3,1)(4,0)(2,2)(3,1)$
$(3,1)(2,2)(2,2)(1,3)$
$(2,2)(3,1)(1,3)(2,2)$

Question-and-answer games: further research

- model theory and axioms for appropriate logics describing our games; including issues like bisimulation invariance and fixed-point definability;
- extensive games with longer sequences of moves;
- a richer account of questions as possible moves of inquiry;
- connections with existing logics of inquiry and learning;
- non-uniform probability distributions;
- structured goals for agents, ordered goal-sets, etc.

Time to wrap up

Announcement Games: current and future work

- Sequential announcements, extensive form games
- Coalitional games
- More sophisticated goal models
- More sophisticated DELs
- Relation to argumentation theory?
- Lying games

Coming soon...

a dark secret
a deadly game

FROM THE CREATOR OF PRETTY LITTLE LIARS
뾘YINGGAME

For more details:

9 T. Ågotnes and H. van Ditmarsch, What will they say? - Public Announcement Games, Synthese 179(1), 2011.

9 T. Ågotnes, J. van Benthem, H. van Ditmarsch and S. Minica, Questionanswer games, to appear in Journal of Applied Non-Classical Logic

QT. Ågotnes, P. Balbiani, H. van Ditmarsch and P. Seban, Group Announcement Logic, Journal of Applied Logic 8(1), 2010

Any $\phi ?$

